Localization of pacemaker channels in lipid rafts regulates channel kinetics.

نویسندگان

  • Andrea Barbuti
  • Biagio Gravante
  • Monica Riolfo
  • Raffaella Milanesi
  • Benedetta Terragni
  • Dario DiFrancesco
چکیده

Lipid rafts are discrete membrane subdomains rich in sphingolipids and cholesterol. In ventricular myocytes a function of caveolae, a type of lipid rafts, is to concentrate in close proximity several proteins of the beta-adrenergic transduction pathway. We have investigated the subcellular localization of HCN4 channels expressed in HEK cells and studied the effects of such localization on the properties of pacemaker channels in HEK and rabbit sinoatrial (SAN) cells. We used a discontinuous sucrose gradient and Western blot analysis to detect HCN4 proteins in HEK and in SAN cells, and found that HCN4 proteins localize to low-density membrane fractions together with flotillin (HEK) or caveolin-3 (SAN), structural proteins of caveolae. Lipid raft disruption by cell incubation with methyl-beta-cyclodextrin (MbetaCD) impaired specific HCN4 localization. It also shifted the midpoint of activation of the HCN4 current in HEK cells and of I(f) in SAN cells to the positive direction by 11.9 and 10.4 mV, respectively. These latter effects were not due to elevation of basal cyclic nucleotide levels because the cholesterol-depletion treatment did not alter the current response to cyclic nucleotides. In accordance with an increased I(f), MbetaCD-treated SAN cells showed large increases of diastolic depolarization slope (87%) and rate (58%). We also found that the kinetics of HCN4- and native f-channel deactivation were slower after lipid raft disorganization. In conclusion, our work indicates that pacemaker channels localize to lipid rafts and that disruption of lipid rafts causes channels to redistribute within the membrane and modifies their kinetic properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caveolin interaction governs Kv1.3 lipid raft targeting

The spatial localization of ion channels at the cell surface is crucial for their functional role. Many channels localize in lipid raft microdomains, which are enriched in cholesterol and sphingolipids. Caveolae, specific lipid rafts which concentrate caveolins, harbor signaling molecules and their targets becoming signaling platforms crucial in cell physiology. However, the molecular mechanism...

متن کامل

The neural cell adhesion molecule regulates cell-surface delivery of G-protein-activated inwardly rectifying potassium channels via lipid rafts.

Mice deficient in the neural cell adhesion molecule (NCAM) exhibit increased anxiety and anxiolytic sensitivity to serotonin 5-HT1A receptor agonists. Here, we investigate the relationship between NCAM and 5-HT1A receptor signaling pathways modulating G-protein-activated inwardly rectifying K+ (Kir3) channels. When studying this relationship in cultured hippocampal neurons, we observed that in ...

متن کامل

Cytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes

Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...

متن کامل

Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation.

Cyclic nucleotide-gated (CNG) channels are the primary targets of light- and odorant-induced signaling in photoreceptors and olfactory sensory neurons. Compartmentalized cyclic nucleotide signaling is necessary to ensure rapid and efficient activation of these nonselective cation channels. However, relatively little is known about the subcellular localization of CNG channels or the mechanisms o...

متن کامل

Association between Tetrodotoxin Resistant Channels and Lipid Rafts Regulates Sensory Neuron Excitability

Voltage-gated sodium channels (VGSCs) play a key role in the initiation and propagation of action potentials in neurons. Na(V)1.8 is a tetrodotoxin (TTX) resistant VGSC expressed in nociceptors, peripheral small-diameter neurons able to detect noxious stimuli. Na(V)1.8 underlies the vast majority of sodium currents during action potentials. Many studies have highlighted a key role for Na(V)1.8 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 94 10  شماره 

صفحات  -

تاریخ انتشار 2004